



# **BH Measurement of AL800 Ring**

John Kuharik Booster 2<sup>nd</sup> Harmonic Cavity Meeting 28 July 2016

#### Goal

Develop a method and experimental apparatus to measure the BvH curve for sample ring of AL-800.





## **AL800 Garnet ring**







Ns: 259 turns, one layer 25awg, 1x2 flat wire

Np: 250 turns, three layers 15awg, 1x2 flat wire



## **Circuit Design**



$$N_P = 250$$
  $N_S = 259$   $R_P = 4.2$   $A = 0.7x10^{-4}m^2$   $I_P = \frac{v_{RP}}{R_P} \approx 7A \text{ peak}$   $r = 0.0.0366m$   $H(t) = \frac{N_P^2 I_P(t)}{2\pi r}$   $I_S = \frac{\mu N_S^2 A}{2\pi r}$ 

#### Changes from previous design:

- Removed RC integrator
- Reduced primary resistor from 8 to 4 ohm.
- Increased power

$$B(t) = \frac{1}{N_s A} \int V_S(t) dt = \frac{1}{N_s A} \int R_I c_I \frac{dV_I(t)}{dt} dt = \frac{R_I C_I}{N_s A} V_I(t)$$



 $V_I = \frac{1}{R_I C_I} \int V_S(t) dt$ 

#### Results

- Narrow hysteresis curve
- Mu(H) has noise at low H but expected results at high H







### **Analysis Improvements**

- New Python program for faster analysis and numerical integration.
- Data smoothing.
- Scope offset correction.





Before processing

After processing



- Measure BvH on Al-800 ring with 200+ Oe.
- Better amplifier, 60W available
- More turns on the windings, 500
- Numerical integration



- ✓ Measure BvH on Al-800 ring with <del>200+ Oe</del>. ~100 Oe
- Better amplifier, 60W available
- More turns on the windings, 500
- Numerical integration



- ✓ Measure BvH on Al-800 ring with <del>200+ Oe</del>. ~100 Oe
- ✓ Better amplifier, 60W available
- More turns on the windings, 500
- Numerical integration



- ✓ Measure BvH on Al-800 ring with <del>200+ Oe</del>. ~100 Oe
- ✓ Better amplifier, 60W available
- ✓ More turns on the windings, 500 250
- Numerical integration



- ✓ Measure BvH on Al-800 ring with <del>200+ Oe</del>. ~100 Oe
- ✓ Better amplifier, 60W available
- ✓ More turns on the windings, 500 250
- ✓ Numerical integration



## **Moving Forward**

- Fine tune analysis and error propagation
- Clean up noise in measurement
- Another toroid winding with more turns???

